TICKS

Submitting Form...

The server encountered an error.

Form received.

Ticks are small arachnids in the order Ixodida. Along with mites, they constitute the subclass Acarina. Ticks are ectoparasites (external parasites), living by hematophagy on the blood of mammals, birds, and sometimes reptiles and amphibians. By consuming on the blood they can get larger and then to a size to where you can see them better, and once they've gotten big enough they eventually move on to another host. Ticks are vectors of a number of diseases, including Lyme disease, Q fever(rare; more commonly transmitted by infected excreta), Colorado tick fever, Rocky Mountain Spotted Fever, tularemia, tick-borne relapsing fever, babesiosis, ehrlichiosis, Tick paralysis and tick-borne meningoencephalitis, as well as bovineanaplasmosis.

TAXONOMY

There are three families of ticks, one of which – Nuttalliellidae – comprises a single species, Nuttalliella namaqua. The remaining two families contain the hard ticks (Ixodidae) and the soft ticks (Argasidae). Ixodidae are distinguished from the Argasidae by the presence of a scutum or hard shield. Ixodidae nymphs and adults both have a prominent capitulum (head) which projects forwards from the body; in the Argasidae, conversely, the capitulum is concealed beneath the body. Argasidae contains 193 species, although the composition of the genera is less certain, and more study is needed before the genera can become stable. The currently accepted genera are Antricola, Argas, Nothaspis, Ornithodoros and Otobius.Though common in North America, they feed rapidly, primarily on birds, and are very rarely found to parasitize land animals or humans. Nuttalliella namaqua is a tick found in southern Africa from Tanzania to Namibia and South Africa, which is placed in its own family, Nuttalliellidae. It can be distinguished from ixodid ticks and argasid ticks by a combination of characters including the position of the stigmata, lack of setae, strongly corrugated integument, and form of the fenestrated plates. Fossilized ticks are common. Recent hypotheses based on total-evidence approach analysis place the origin of ticks in the Cretaceous (65 to 146 million years ago) with most of the evolution and dispersal occurring during the Tertiary (5 to 65 million years ago). The oldest example is an argasid (bird) tick from Cretaceous New Jersey amber. The younger Baltic and Dominican ambers have also yielded examples, all of which can be placed in living general.

RANGE & HABITAT

Ticks are small arachnids in the order Ixodida. Along with mites, they constitute the subclass Acarina. Ticks are ectoparasites (external parasites), living by hematophagy on the blood of mammals, birds, and sometimes reptiles and amphibians. By consuming on the blood they can get larger and then to a size to where you can see them better, and once they've gotten big enough they eventually move on to another host. Ticks are vectors of a number of diseases, including Lyme disease, Q fever(rare; more commonly transmitted by infected excreta), Colorado tick fever, Rocky Mountain Spotted Fever, tularemia, tick-borne relapsing fever, babesiosis, ehrlichiosis, Tick paralysis and tick-borne meningoencephalitis, as well as bovineanaplasmosis.

ANATOMY & PHYSIOLOGY

Ticks, like mites, have bodies which are divided into two primary sections: the anterior capitulum (or gnathosoma), which contains the head and mouthparts; and the posterior idiosoma which contains the legs, digestive tract, and reproductive organs.

DIET AND FEEDING BEHAVIORS -Ticks, such as this Ixodes scapularis, climb to the ends of leaves or branches and attach to hosts that brush against them.Ticks satisfy all of their nutritional requirements on a diet of blood, a practice known as hematophagy. They extract the blood by cutting a hole in the host's epidermis, into which they insert their hypostome, likely keeping the blood from clotting by excreting an anticoagulant.

LEGS

Like all arachnids, ticks have eight legs. The legs of Ixodidae and Argasidae are similar in structure. Each leg is composed of six segments: the coxa, trochanter, femur, patella, tibia, and tarsus. Each of these segments are connected by muscles which allow for flexion and extension, however the coxae have limited lateral movement. When not being used for walking, the legs remain tightly folded against the body. In addition to being used for locomotion, the tarsus of leg I contains a unique sensory organ known as the Haller's organ which can detect odors and chemicals emanating from the host, as well as sensing changes in temperature and air currents.

LIFE CYCLE & REPRODUCTION

Both ixodid and argasid ticks undergo three primary stages of development: larval, nymphal, and adult.

IXODIDAE - Ixodid ticks require three hosts, and their life cycle takes at least one year to complete. Up to 3,000 eggs are laid on the ground by an adult female tick. When larvae emerge, they feed primarily on small mammals and birds. After feeding, they detach from their host and molt to nymphs on the ground, which then feed on larger hosts and molt to adults. Female adults attach to larger hosts, feed, and lay eggs, while males feed very little and occupy larger hosts primarily for mating.

ARGASIDAE - Argasid ticks, unlike ixodid ticks, may go through several nymphal stages, requiring a meal of blood each time. Their life cycles range from months to years. The adult female argasid tick can lay a few hundred to over a thousand eggs over the course of her lifetime. Larvae feed very quickly and detach to molt to nymphs. Nymphs may go through as many as seven instars, each requiring a blood meal. Both male and female adults feed on blood, and they mate off the host. During feeding, any excess fluid is excreted by the coxal glands, a process which is unique to argasid ticks.

TICK-BORNE DISEASE -

MEDICAL ISSUES

Tick-borne illnesses are caused by infection with a variety of pathogens, including rickettsia and other types of bacteria, viruses, and protozoa. Because ticks can harbor more than one disease-causing agent, patients can be infected with more than one pathogen at the same time, compounding the difficulty in diagnosis and treatment. Major tick-borne diseases include Lyme disease, Rocky Mountain spotted fever, relapsing fever,tularemia, tick-borne meningoencephalitis, Colorado tick fever, Crimean-Congo hemorrhagic fever, babesiosis and cytauxzoonosis. A new find is a bacteria that causes blood clots is candidatus neoehrlichia mikurensis. It mainly affects persons with lowered immune defense and is present in 9% of rodents, and can be cured with antibiotics. Tick bites may induce an allergy to red meat in some people, due to the allergen galactose alpha-1,3-galactose. Allergic reactions to red meat typically occur in individuals who have had local allergic reactions to ticks. Within six months or so they develop anaphylaxis to red meat which almost invariably occurs several hours after eating red meat. The reactions may rarely be profound, due to the co-existence of an increased number ofmast cells (mastocytosis). Eggs can be infected with pathogens inside of the ovaries, meaning that baby ticks can be infectious immediately at birth, before feeding on their first host.

FIRST AID - Engorged tick attached to back of toddler's head. Adult thumb shown for scale.In general, the best way to remove adult Ixodidae is mechanically. If the tick's head and mouthparts are not attached to the body after removal, it may be necessary to perform a punch biopsy to remove any parts remaining inside the patient.

 

Fleas are insects that form the order Siphonaptera. They are wingless, with mouthparts adapted for piercing skin and sucking blood. Fleas are external parasites, living by hematophagy off the blood of mammals and birds.

MORPHOLOGY

& BEHAVIOR

Fleas are wingless insects, 1/16 to 1/8-inch (1.5 to 3.3 mm) long, that are agile, usually dark colored (for example, the reddish-brown of the cat flea), with tube-like mouth parts adapted to feeding on the blood of their hosts. Their legs are long, the hind pair well adapted for jumping; a flea can jump vertically up to 7 in (18 cm) and horizontally up to 13 in (33 cm), making the flea one of the best jumpers of all known animals (relative to body size), second only to the froghopper. If humans had the jumping power of a flea, a 1.8-m (6-ft) person could make a jump 90 m (295 ft) long and 49 m (160 ft) high.Researchers with the University of Cambridge in England found that fleas take off from their tibiae and tarsi (the insect equivalent of feet) and not their trochantera, or knees.[4] It has been known that fleas do not use direct muscle power, but instead use the muscle to store energy in a protein named resilin before releasing it rapidly (like a human using a bow and arrow), with researchers using high-speed video technology and mathematical models to discover where the spring action actually happens.Their bodies are laterally compressed, permitting easy movement through the hairs or feathers on the host's body (or in the case of humans, under clothing). The flea body is hard, polished, and covered with many hairs and short spines directed backward, which also assist its movements on the host.The tough body is able to withstand great pressure, likely an adaptation to survive attempts to eliminate them by mashing or scratching. Even hard squeezing between the fingers is normally insufficient to kill a flea. However, rolling them back and forth a dozen times disables their legs, resulting in death.Fleas lay tiny, white, oval-shaped eggs better viewed through a loupe or magnifying glass. The larva is small and pale, has bristles covering its worm-like body, lacks eyes, and has mouth parts adapted to chewing. The larvae feed on various organic matter, especially the feces of mature fleas. The adult flea's diet consists solely of fresh blood. In the pupal phase, the insect is enclosed in a silken, debris-covered cocoon.

LIFE CYCLE & HABITAT

Fleas are holometabolous insects, going through the four lifecycle stages of egg, larva, pupa, and imago (adult). Adult fleas must feed on blood before they can become capable of reproduction. Flea populations are distributed with about 50% eggs, 35% larvae, 10% pupae, and 5% adults. EGGS-The flea life cycle begins when the female lays after feeding. Eggs are laid in batches of up to 20 or so, usually on the host itself, which means that the eggs can easily roll onto the ground. Because of this, areas where the host rests and sleeps become one of the primary habitats of eggs and developing fleas. The eggs take around two days to two weeks to hatch. LARVAE -Flea larvae emerge from the eggs to feed on any available organic material such as dead insects, feces, and vegetable matter. In laboratory studies, some dietary diversity seems necessary for proper larval development. Blood-only diets allow only 12% of larvae to mature, whereas blood and yeast or dog chow diets allow almost all larvae to mature. They are blind and avoid sunlight, keeping to dark places such as sand, cracks and crevices, and bedding. PUPAE -Given an adequate supply of food, larvae pupate and weave silken cocoons within 1–2 weeks after three larval stages. After another week or two, the adult fleas are fully developed and ready to emerge. They may remain resting during this period until they receive a signal that a host is near - vibrations (including sound), heat, and carbon dioxide are all stimuli indicating the probable presence of a host. Fleas are known to overwinter in the larval or pupal stages. ADULT FLEA - Once the flea reaches adulthood, its primary goal is to find blood and then to reproduce. Its total life span can be as short as one year, but may be several years in ideal conditions. Female fleas can lay 5000 or more eggs over their life, allowing for phenomenal growth rates. Average 30–90 days.A flea might live a year and a half under ideal conditions. These include the right temperature, food supply, and humidity. Generally speaking, an adult flea only lives for 2 or 3 months. Without a host for food a flea's life might be as short as a few days. With ample food supply, the adult flea will often live up to 100 days.Newly emerged adult fleas live only about one week if a blood meal is not obtained. However, completely developed adult fleas can live for several months without eating, so long as they do not emerge from their puparia. Optimum temperatures for the flea's life cycle are 21 °C to 30 °C (70 °F to 85 °F) and optimum humidity is 70%.Adult female rabbit fleas, Spilopsyllus cuniculi, can detect the changing levels of cortisol and corticosterone hormones in the rabbit's blood that indicate it is getting close to giving birth. This triggers sexual maturity in the fleas and they start producing eggs. As soon as the baby rabbits are born, the fleas make their way down to them and once on board they start feeding, mating, and laying eggs. After 12 days, the adult fleas make their way back to the mother. They complete this mini-migration every time she gives birth.

CLASSIFICATION

In the past, it was most commonly supposed that fleas had evolved from the flies (Diptera), based on similarities of the larvae. (Some authorities use the name Aphaniptera because it is older, but names above family rank need not follow the ICZN rules of priority, so most taxonomists use the more familiar name). Genetic and morphological evidence indicates that they are descendants of the scorpionfly family Boreidae, which are also flightless; accordingly, they may eventually be reclassified as a suborder within the Mecoptera.Their evolution continued to produce adaptations for their specialized parasitic niche, such that they now have no wings and their eyes are covered over. The large number of flea species may be attributed to the wide variety of host species on which they feed, which provides so many specific ecological niches to which to adapt. In any case, all these groups seem to represent a clade of closely related insect lineages, for which the names Mecopteroidea and Antliophora have been proposed.Flea systematics are not entirely fixed. While compared to many other insect groups, fleas have been studied and classified fairly thoroughly, details still remain to be learned about the evolutionary relationships among the different flea lineages.

 

 

THE FLEAS

Infinity Trade Ltd.

Budapest

Szentendrei út 89-95.

1033 Hungary

 

Tel: (+36)19201140

Fax: (+36)17000568